*REGISTER TRANSFER AND MICRO
OPERATIONS

Register Transfer and Microoperations

* The operations executed on data stored in registers are called microoperations. A
microoperation is an elementary operation performed on the information stored in one or
more registers. The result of the operation may replace the previous binary information of
a register or may be transferred to another register. Examples of microoperations are shift,
count, clear, and load. The internal hardware organization of a digital computer is best
defined by specifying:

* The set of registers it contains and their function.
* The sequence of microoperations performed on the binary information stored in the registers.
e The control that initiates the sequence of microoperations.

* The symbolic notation used to describe the microoperation transfers among registers 1s called a
register transfer language. The term “register transter” implies the availabi 1% of hardware logic
circuits that can perform a stated microoperation and transfer the result of the operation to the
same or another register. A register transfer language is a system for expressing in symbolic
form the microoperation sequences among the registers of a digital module.

REGISTER TRANSFER

* Computer registers are designated by capital letters (sometimes
followed by numerals) to denote the function of the register. For
example, the register that holds an address for the memory unit is
usually called a memory address register and is designated by the
name MAR. Other designations for registers are PC (for program
counter), IR (for instruction register), and Rz (for processor register).
The individual flip-flops in an n-bit register are numbers in
sequence from o through n-1, starting from o in the rightmost
position and increasing the numbers toward the left. Fig.1 shows
the representation of registers in block diagram form.

Register Transfer

* The most common way to represent a register is by a rectangular
box with the name of the register inside, as in diagram. The
individual bits can be distinguished as in (b). The numbering of bits
in a 16-bit register can be marked on top of the box as shown in (c).
A 16-bit register is partitioned into two parts in (d). Bits o through 7
are assigned the symbol L (for low byte) and bits 8 through 15 are
assigned the symbol H (for high byte). The name of the 16-bit
register is PC. The symbol PC (0-7) or PC (L) refers to the low-order
byte and PC (8-15) or PC (H) to the high-order byte.

DIAGRAMMATICVIEW

(a) Register R (b)) Showing individual bits

I3 (13 a 7)

{c) Numbernng of bits (d} Divided into two paris

Register Transfer

Information transfer from one register to another is
designated in symbolic form by means of a replacement
operator. The statement R1 «— R2 denotes a transfer of
the content of register R1 into register R2. It designates
a replacement of the content of R2 by the content of R1.
By definition, the content of the source register R1 does
not change after the transfer.

The basic symbols of the register transfer notation are
listed 1n Table .

Symbol Description Examples

Letters Denotes a register MAR, R2

(and numerals)

Parentheses () Denotes a part of a register R2(0-7), R2(L)
Arrow Denotes transter of information R2 + Rl
Comma , separates two microoperations K2 + R, R1 « R2

Register Transfer

* Registers are denoted by capital letters, and numerals may follow the
letters. Parentheses are used to denote a part of a register by
specifying the range of bits or by giving a symbol name to a portion
of a register. The arrow denotes a transfer of information and the
direction of transfer. A comma 1s used to separate two or more
operations that are executed at the same time. The statement

e T: R2«— R1,R]l « R2

* denotes an operation that exchanges the contents of two registers
during one common clock pulse provided that T = 1. This
simultaneous operation 1s possible with registers that have edge-
triggered flip-flops.

Bus and Memory Transfer

* A more efficient scheme for transferring information between
registers in a multiple-register configuration is a common bus
system. A bus structure consists of a set of common lines, one for
each bit of a register, through which binary information is
transferred one at a time. Control signals determine which register
is selected by the bus during each particular register transfer.

Bus and Memory Transfer

* One way of constructing a common bus system is with
multiplexers. The multiplexers select the source register whose
binary information is then placed on the bus. The construction of a
bus system for four registers is shown in following diagram. Each
register has four bits, numbered o through 3. The bus consists of
four 4 x 1 multiplexers each having four data inputs, o through 3,
and two selection inputs, S, and S,

Bus and Memory Transfer

* In order not to complicate the diagram with 16 lines crossing each
other, labels are used to show the connections from the outputs of
the registers to the inputs of the multiplexers. For example, output

1 of register A is connected to input o of MUX 1 because this input
is labeled

Register selected

S|
MUX D

1

I

i Mn

Register Register © Register & Register A4

Three-State Bus Buffers

* A bus system can be constructed with three-state gates instead of
multiplexers. A three-state gate is a digital circuit that exhibits three
states. Two of the states are signals equivalent to logic 1 and o as in a
conventional gate. The third state is a high-impedance state. The high-
impedance state behaves like an open circuit, which means that the
output is disconnected and does not have a logical significance.

* The graphic symbol of a three-state buffer gate is shown in diagram. It is
distinguished from a normal buffer by having both a normal input and a
control input. The control input determines the output state. When the
control input is equal to 1, the output is enabled and the gate behaves
like any conventional buffer, with the output equal to the normal input.
When the control input is o, the output is disabled and the gate goes to a
high-impedance state, regardless of the value in the normal input

Normal input A Output ¥ = A fC=1
High-impedance if C =0

Control input C

The symbol of three state bus buffer

Select «{

Enable

Diagram of bus line with three state-buffers

* The construction of a bus system with three-state buffers is
demonstrated in above diagram . The outputs of four buffers are
connected together to form a single bus line. (It must be realized
that this type of connection cannot be done with gates that do not
have three-state outputs). The control inputs to the buffers
determine which of the four normal inputs will communicate with
the bus line.

* One way to ensure that no more than one control input is active at
any given time is to use a decoder, as shown in the diagram. When
the enable input of the decoder is o, all of its four outputs are o,
and the bus line is in a high-impedance state because all four
buffers are disabled. When the enable input is active, one of the
three-state buffers will be active, depending on the binary value in
the select inputs of the decoder.

Memory Transfer

* The transfer of information from a memory word to the outside
environment is called a read operation. The transfer of new
information to be stored into the memory is called a write
operation. A memory word will be symbolized by the letter M. The
particular memory word among the many available is selected by
the memory address during the transfer. It is necessary to specify
the address of M when writing memory transfer operations. This
will be done by enclosing the address in square brackets following
the letter M.

Memory Transfer

* Consider a memory unit that receives the address from a register,
called the address register, symbolized by AR. The data are
transferred to another register, called the data register, symbolized
by DR. The read operation can be stated as follows:

Read: DR «+— M[AR]

* This causes a transfer of information into DR from the memory
word M selected by the address in AR.

Memory Transfer

* The write operation transfers the content of a data register to a
memory word M selected by the address. Assume that the input

data are in register R1 and the address is in AR. The write operation
can be stated symbolically as follows:

* Write: M[AR] < Ra

* This causes a transfer of information from Ra into the memory
word M selected by the address in AR.

Arithmetic Microoperations:

* A microoperation is an elementary operation performed with the data
stored in registers. The microoperations most often encountered in
digital computers are classified into four categories:

* 1. Register transfer microoperations transfer binary information from
one register to another.

* 2. Arithmetic microoperations perform arithmetic operations on
numeric data stored in registers.

* 3. Logic microoperations perform bit manipulation operations on non-
numeric data stored in registers.

* 4. Shift microoperations perform shift operations on data stored in
registers

Arithmetic Microoperations

* The basic arithmetic microoperations are addition, subtraction, increment,
decrement, and shift. Arithmetic shifts are explained later in conjunction with
the shift microoperations. The arithmetic microoperation defined by the
statement

* R3+«—R1+R2

* The above microoperation specifies an add microoperation. It states that the
contents of register R1 are added to the contents of register R2 and the sum
transferred to register R3. To implement this statement with hardware we
need three registers and the digital component that performs the addition
operation. The other basic arithmetic microoperations are listed in Table 3.
Subtraction is most often implemented through complementation and
addition. Instead of using the minus operator, we can specify the subtraction
by the following statement:

* R3«—Ri1i+R2+1

List of Microoperations

Symbolic Designation Description

R3 « R1+R2 Contents of R1 plus R2 transferred to R3

R3«—R1-R2 Contents of R1 minus R2 transferred to R3

R2 < R2 Complement the contents of R2 (1's complement)

R2<+R2+1 2's complement the contents of R2 (negate)

R3«—R1+R2+1 Ra plus the 2’s complement of R2 (subtraction)

Ri«R1+1 Increment the contents of R1 by one

Ri<—R1i-1 Decrement the contents of R1 by one

Binary Adder

* The digital circuit that generates the arithmetic sum of two binary
numbers of any lengths is called a binary adder. The binary adder is
constructed with full-adder circuits connected in cascade, with the
output carry from one full-adder connected to the input carry of
the next full-adder. The following diagram shows interconnections
of four full-adders (FA) to provide a 4-bit binary adder. The augend
bits of A and the addend bits of B are designated by subscript
numbers from right to left, with subscript o denoting the low-order
bit. The carries are connected in a chain through the full-adders.
The input carry to the binary adder is C, and the output carry is C,.
The S outputs of the full-adders generate the required sum bits

Diagram of Binary Adder

Binary Incrementer

* The increment microoperation adds one to a number in a register.
For example, if a 4-bit register has a binary value o110, it will go to
o111 after it is incremented. This microoperation is easily
implemented with a binary counter. Every time the count enable is
active, the clock pulse transition increments the content of the
register by one. There may be occasions when the increment
microoperation must be done with a combinational circuit
independent of a particular register. This can be accomplished by
means of half-adders connected in cascade.

Binary Incrementer

* The diagram of a 4-bit combinational circuit, incrementer is shown
in the following diagram. One of the inputs to the least significant
half-adder (HA) is connected to logic-1 and the other input is
connected to the least significant bit of the number to be
incremented. The output carry from one half-adder is connected to
one of the inputs of the next-higher-order half-adder. The circuit
receives the four bits from A, through A, adds one to it, and
generates the incremented output in S, t?wrough S,. The output
carry C, will be 1 only after incrementing binary 1111. This also
causes outputs S, through S, to go to o.

Diagram of Binary Incrementer

Binary Adder/Subtractor

* The subtraction of binary numbers can be done most conveniently
by means of complements. Remember that the subtraction, A - B
can be done by taking the 2's complement of B and adding it to A.
The 2's complement can be obtained by taking the 1's complement
and adding one to the least significant pair of bits. The 1's
complement can be implemented with inverters and a one can be
added to the sum through the input carry.

Binary Adder/Subtractor

* The addition and subtraction operations can be combined into one
common circuit by including an exclusive-OR gate with each full-
adder. A 4-bit adder-subtractor circuit is shown in Fig.6. The mode
input M controls the operation. When M = o the circuit is an adder
and when M = 1 the circuit becomes a subtractor. Each exclusive-
OR gate receives input M and one of the inputs of B. When M = o,
we have B @ o = B. The full-adders receive the value of B, the input
carry is 0, and the circuit performs A plus B. When M = 1, we have B
@ 1=B"and C, =1.The B inputs are all complemented anda 1is
added through the input carry. The circuit performs the operation A
plus the 2’'s complement of B

Binary Adder/Subtractor

Arithmetic Circuit

* The arithmetic microoperations listed in the above Table can be
implemented 1n one composite arithmetic circuit. The basic component of
an arithmetic circuit 1s the parallel adder. By controlling the data imputs to
the adder, 1t 1s possible to obtain different types of arithmetic operations.

* The diagram of a 4-bit arithmetic circuit as shown in the followin
diagram. It has four full-adder circuits that constitute the 4-bit adder an
four multiplexers for choosing different operations. There are two 4-bit
inputs A and B and a 4-bit output D. The four inputs from A go dlrectg to
the X mputs of the binary adder. Each of the four mputs from B is
connected to the data inputs of the multiplexers.

Arithmetic Circuit

* The multiplexers data inputs also receive the complement of B. The
other two data inputs are connected to logic-o and logic-1. Logic-o
is a fixed voltage value (o volts for TTL integrated circuits) and the
logic-1 signal can be generated through an inverter whose input is
0. The four multiplexers are controlled by two selection inputs, S,
and S.. The input carry C,, goes to the carry input of the FA in the
least significant position. The other carries are connected from one
stage to the next.

IrCUI

Ic C

ithmet

Diagram of Ar

§

s

Arithmetic Circuit

* The output of the binary adder is calculated from the following
arithmetic sum: D = A +Y + C, where A is the 4-bit binary number
at the X inputs and Y is the 4-bit binary number at the Y inputs of
the binary adder. C . is the input carry, which can be equal to o or 1.
Note that the symbol + in the equation above denotes an
arithmetic plus. By controlling the value of Y with the two selection
inputs S, and S, and making C,, equal to o or 1, it is possible to
generate the eight arithmetic microoperations listed in the
following table.

Arithmetic Circuit

Select

-y
o

= o

= o = e T e T
-~ O W ®

0
0
1
1
1
l

Qutput
D=A+Y+C, Microoperation

Add

Add with carry
Subtract with borrow
Subtract

Transfer A

Increment A
Decrement A
Transfer A

Arithmetic Circuit

* When S.S,_ = 00, the value of B is applied to the Y inputs of the
adder.If C_=o0,theoutputD=A+B.IfC_=1,outputD=A+B +1.
Both cases perform the add microoperation with or without adding
the input carry.

* When S.S_ = 01, the complement of B is applied to the Y inputs of
the adder. If C_ =1, then D =A + B + 1. This produces A plus
the 2’s complement of B, which is equivalent to a subtraction of A -
B. When C._ =0, then D = A + B. This is equivalent to a subtract with
borrow, thatis, A—B —1.

Arithmetic Circuit

* When S_S, = 10, the inputs from B are neglected, and instead, all o’s are
inserted into the Y inputs. The output becomes D = A + o + C... This gives
D=AwhenC_=o0andD =A +1when C_ =1.Inthe first case we have a
direct transfer from input A to output D. In the second case, the value of

A'is incremented by 1.

When S.S_ = 11, all 12's are inserted into the Y inputs of the adder to
producethe decrement operation D = A -1 when C._ = 0. This is because
a number with all 1's is equal to the 2's complement of 1 (the 2’s
complement of binary ooo1 is 1111). Adding a number A to the 2’s
complement of 1 produces F =A +2's complement of 1 = A —1. When
C,,=1,thenD=A-1+1=A, which causes a direct transfer from input A
to output D. Note that the microoperation D = A is generated twice, so
there are only seven distinct microoperations in the arithmetic circuit.

Logic Microoperations

e | ogic Microoperations:

* Logic microoperations specify binary operations for strings of bits
stored in registers. These operations consider each bit of the register
separately and treat them as binary variables. For example, the
exclusive-OR microoperation with the contents of two registers R1 and
R2 is symbolized by the statement

e P:Ri<—R1&R2

* It specifies a logic microoperation to be executed on the individual bits
of the registers provided that the control variable P = 1. As a numerical
example, assume that each register has four bits. Let the content of Ra
be 1010 and the content” of R2 be 1100. The exclusive-OR
microoperation stated above symbolizes the following logic
computation:

Logic Microoperations

* Special symbols will be adopted for the logic microoperations OR, AND, and
complement, to distinguish them from the corresponding symbols used to
express Boolean functions. The symbol V will be used to denote an OR
microoperation and the symbol A to denote an AND microoperation. The
complement microoperation is the same as the 1's complement and uses a bar
on top of the symbol that denotes the re%lster name. By using different
symbols, it will be possible to differentiate between a logic microoperation
and a control (or Boolean) function. Another reason for adopting two sets of
symbols is to be able to distinguish the symbol +, when used to symbolize an
arithmetic plus, from a Iolgic R operation. Although the + symbol has two
meanings, it will be possible to distinguish between them by noting where the
symbol occurs. When the symbol + occurs in a microoperation, it will denote
an arithmetic Blus. When it occurs in a control (or Boolean) f’unctlon, it will
denote an OR operation. We will never use it to symbolize an OR
microoperation.

Hardware Implementation

Hardware Implementation

The hardware implementation of logic microoperations requires that logic gates be

inserted for each bit or pair of bits in the registers to perform the required logic

function. AIthouc};{h there are 16 logic microoperations, most comﬁuters use only four

aA_ND OR, XOR (exclusive-OR), and complement —from which all others can be
erived.

The following diagram shows one stage of a circuit that g{enerates the four basic logic
microoperations. It consists of four gates and a multiﬁ exer. Each of the four logic
oFeratlons is generated through a gate that performs the required logic. The outputs
of the gates are applied to the data’inputs of the multiplexer. The two'selection inputs
S, and’S_ choose one of the data inputs of the muItiB exer and direct its value to the
output. The diagram shows one typical stage with subscript i. For a logic circuit with n
bits, the diagram must be repeated n times for i = 0, 1, 2, ..., n-1. The selection
variables are applied to all stages. The function table in Fig.g (b) lists the logic
microoperations obtained for each combination of the selection variables.

LOGIC MICROOPERATIONS

4 |
B3

O puat Operation

XOR

Complement

ik Funcrion table

ia) Logic diagram

Arithmetic Logic Shift Unit

* Instead of having individual registers performing the microoperations
directly, computer systems employ a number of storage registers
connected to a common operational unit called an arithmetic logic unit,
abbreviated ALU. To perform a microoperation, the contents of
specified registers are placed in the inputs of the common ALU. The ALU
performs an operation and the result of the operation is then transferred
to a destination register. The ALU is a combinational circuit so that the
entire register transfer operation from the source registers through the
ALU and into the destination register can be performed during one clock
pulse period. The shift microoperations are often performed in a
separate unit, but sometimes the shift unit is made part of the overall
ALU.

Arithmetic Logic Shift Unit

* The arithmetic, logic, and shift circuits can be combined into one ALU with
common selection variables. One stage of an arithmetic logic shift unit is as
shown in the following diagram. The subscript / designates a typical stage.
Inputs Aj and Bi are applied to both the arithmetic and Togic units. A particular
microoperation is selected with inputs S, and S,. A 4 x"1 multiplexer at the
output chooses between an arithmetic output in E; and a logic output in H.
The data in the multiplexer are selected with inputs S, and S,. The other two
data inputs to the muItiFIexer receive inputs A_, for the shif-right operation
and A, for the shift-left operation. Note that the diagram shows just one
typical stage. The circuit of Fig.12 must be repeated n times for an n-bit ALU.
The output-carry C,, of a given arithmetic stage must be connected to the
input carry C; of the next stage in sequence. Theinput carry to the first stage is
the input carry C,, which provides a selection variable for the arithmetic
operations.

rithmetic Logic Shift Unit

List of Operations of ALSU

COperation select

5o Orperation Function

1d

A Transfer A

A Increment A

A Addition

A - Add with carry

A subtract with borrow

A& - Subtraction

A Drecrament A

e Transfer A

A M AN

1 O R

MNOR
Complement A
Shift mght A mwo &
Shift left A into &

o SO

s e e

1

1

i 1

L 1
1 L

1 O

1 1

1 1

1 e F

=
Rk EEEEE R

